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ABSTRACT: RosettaLigand is a protein−small-molecule (ligand)
docking software capable of predicting binding poses and is used for
virtual screening of medium-sized ligand libraries. Structurally similar
small molecules are generally found to bind in the same pose to one
binding pocket, despite some prominent exceptions. To make use of this
information, we have developed RosettaLigandEnsemble (RLE). RLE
docks a superimposed ensemble of congeneric ligands simultaneously.
The program determines a well-scoring overall pose for this superimposed
ensemble before independently optimizing individual protein−small-
molecule interfaces. In a cross-docking benchmark of 89 protein−small-
molecule co-crystal structures across 20 biological systems, we found that
RLE improved sampling efficiency in 62 cases, with an average change of
18%. In addition, RLE generated more consistent docking results within a
congeneric series and was capable of rescuing the unsuccessful docking of
individual ligands, identifying a nativelike top-scoring model in 10 additional cases. The improvement in RLE is driven by a
balance between having a sizable common chemical scaffold and meaningful modifications to distal groups. The new ensemble
docking algorithm will work well in conjunction with medicinal chemistry structure−activity relationship (SAR) studies to more
accurately recapitulate protein−ligand interfaces. We also tested whether optimizing the rank correlation of RLE-binding scores
to SAR data in the refinement step helps the high-resolution positioning of the ligand. However, no significant improvement was
observed.

■ INTRODUCTION

Ligand Docking and Structure-Based Drug Discovery.
Structure-based drug discovery and optimization is a critical
technique at the intersection of pharmacology and structural
biology. Structure-based computer-aided drug discovery (SB-
CADD) is a powerful way to create hypotheses based on
ligand-binding poses and specific predicted protein/ligand
interactions that guide the design of improved small
molecules.1 These hypotheses can be tested by a variety of
experimental approaches including fluorescence-binding stud-
ies, calorimetric measurements, NMR spectroscopic studies, or
X-ray crystallography, often comparing multiple ligands and/or
wild-type with mutant proteins.2 For SB-CADD to maximize its
impact on drug discovery, it is necessary for computational
ligand docking methodologies to effectively identify correct
protein−ligand-binding positions.

Structure−activity relationships (SARs) refer to differences
in binding affinity or biological efficacy following chemical
scaffold derivatizations. Medicinal chemistry makes use of such
minor modifications to optimize lead compounds for desired
affinity and other pharmacological properties. This creates a
massive wealth of SAR data on related ligands for a single
protein target. The PubChem database alone contains over 200
million measurements of biological activities on approximately

10 000 protein targets.3 BindingDB specifically organizes a
portion of its database into collections of congeneric ligands
with at least one co-crystallized with the common protein
target.4 It is generally expected that highly similar ligands form
similar interactions when binding to the same target.5 We
hypothesize that a docking algorithm that leverages this
information can eliminate a portion of false-positive binding
poses, i.e., poses that score well, but are incorrect.

Inconsistent Performance of Existing Protein−Ligand
Docking Tools. RosettaLigand,6,7 a small docking tool within
the Rosetta structural biology modeling software suite,8 is one
of several algorithms developed for this purpose in the last few
decades. AutoDock,9 DOCK,10 and Glide11 are other popular
methods, all of which differ in sampling and/or scoring
techniques. The performance of these docking tools is not
always consistent across systems. A 2013 docking study using
the PDBBind data set evaluated scoring functions for decoy
discrimination and scoring correlation. The success rate for
identifying correct binding modes from decoys was significantly
higher than that for identifying weak, middle, and strong
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binders within a related ligand series.12 Similar results were
obtained in the 2012 Community Structure Activity Resource
(CSAR) evaluation, which found that even when docking
software was able to recover correct binding poses for a given
ligand, few could consistently rank order active ligands.13 The
recent D3R Grand Challenge reaffirmed these findings and
noted that docking performance varied even within the same
congeneric series. In addition, the overall success of a docking
method was dependent on its preparatory workflow.14 This
performance gap between docking and ranking is likely due to
the steep energy landscape observed near-native binding modes
for high-affinity protein−ligand complexes. Small perturbations
in these regions generally resulted in drastic scoring changes.15

Use of Structure Ensembles in Docking. Ensemble
methods have traditionally been independently approached
from the protein and ligand sides. Protein ensembles are a
common way of capturing conformational diversity during rigid
receptor docking simulations. This need for a structure
ensemble can be due to the inherent flexibility of the protein
(conformational selection) and/or an induced fit effect on
ligand binding. Protein structural ensembles can be generated
from experimental determination such as NMR or through
computational methods such as molecular dynamics. One such
preparation is the relaxed complex scheme that generates a set
of receptor targets for docking.16 To emulate induced fit with
ligand binding, Glide docking can be used to convert all
interface residues into alanine to allow for sampling the binding
pocket without bias from initial side-chain orientations.17 For
scoring purposes, protein ensembles can be handled by an
“average energy grid” that scores over the ensemble18 or by
using a selection method to identify a single template mid-
simulation.19 Feixas et al. and Sinko et al. further review the use
of multiple receptor structures in drug discovery and
design.20,21

Ligand structural ensembles are used to represent both
ligand conformations and pharmacophore information from
multiple ligands. Molecular mechanics or fragment-based
sampling can be used to generate conformations before
docking.22 Hybrid methods incorporate information from
multiple ligands to better position a given target. For example,
HybridDock performs predocking alignment via pharmaco-
phore matching with similar molecules.23 However, these
methods require related co-crystal structures to be readily
applicable.

It has been observed that use of well-chosen structural
ensembles is advantageous over docking with a single structure,
particularly when ensemble proteins are co-crystallized with
molecules of similar chemical structure.24,25 In this manuscript,
we developed a two-stage algorithm for ensemble docking of
multiple related ligands into a single protein structure.

Incorporating Ligand Ensemble Docking into Roset-
taLigand. RosettaLigand models protein−ligand interactions
with full ligand- and protein-binding pocket flexibility. This is
achieved with pregenerated ligand conformations and protein
side-chain rotamer libraries.6,7 RosettaLigand is currently
capable of docking multiple ligands simultaneously, but only
in the sense that they bind the protein jointly (e.g., a small
molecule together with a key bridging water molecule or a
cofactor with metal ion bound).26 Here, we have extended
RosettaLigand to RosettaLigandEnsemble (RLE), an algorithm
that can identify a binding mode favorable to a superimposed
ensemble of congeneric ligands. This allows users to
simultaneously dock a series of ligands in unison instead of

individually as single ligands. We hypothesize that this will
increase the efficiency and accuracy of sampling. We illustrate
the hypothesized sampling advantage of RLE in Figure 1. Due

to the presence of functional groups of varying sizes found
within a SAR series, there may be binding modes available to
certain molecules, but not others. RLE is capable of eliminating
binding orientations not available to the ensemble as a whole.
Furthermore, highly similar ligands are expected to bind in a
similar fashion with common interactions to the chemical
core.5,27 The RLE scoring function emphasizes favorable
positioning for the common scaffold, shown by the red outline.
The greater the number of molecules that share a common
substructure, the greater the scoring emphasis on that particular
substructure. It is not anticipated that RLE will significantly
improve docking for congeneric ligands that exhibit significantly
different binding modes. Malhotra et al. reviewed receptor and
ligand characteristics that tend to exhibit these alternate binding
modes.28

■ EXPERIMENTAL METHOD
Benchmark Data set. A data set of 109 protein−ligand

complexes across 20 systems (Supporting Information (SI)
Table S1) is curated from the combination of the Community
Structure−Activity Relationship (CSAR),29 BindingDB Pro-
tein−Ligand Validation Sets,4 PDBBind,30 D3R docking
resource, and individual crystallographic studies.31−33 Each
data set consisted of at least four chemically related ligands with
experimental data and X-ray crystallography determined
structures against a common protein target. A single receptor
structure was selected from each data set as the primary
docking target on the basis of crystallographic resolution,
density in the ligand-binding pocket, and experimental affinity/
activity. To test the potential of an ensemble docking approach,
the data set favors cases wherein congeneric ligands bind in a
similar fashion and an improvement using RLE docking is
expected. Figure S3 shows the distribution of congeneric ligand
root-mean-square deviations (RMSDs) and common scaffold
sizes observed in the data set. The selected protein receptor
structure is energy minimized using the Rosetta FastRelax
protocol with a knowledge-based all-atom energy function.34

The details of the Rosetta energy function have been covered
extensively by Alford et al.35 This minimization is performed in
the apo state to remove the bias of side-chain positioning for
the co-crystallized ligand. All other molecules in the series are

Figure 1. Hypothesized mechanism of the sampling advantage of RLE.
(Top) Three small molecules (green) are independently docked by
RosettaLigand into the protein-binding pocket (blue). Multiple
docked orientations are possible for each small molecule. (Bottom)
The same three molecules are first aligned using their common
scaffold (red). Docking in concert using RLE then yields a single,
unambiguous binding orientation.
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cross-docked to the energy minimized target using either
traditional RosettaLigand docking or simultaneous RLE
docking. Ligand conformations are generated using the in-
house BioChemicalLibrary fragment-based conformer sampling
methodology.22 The co-crystallized ligand is excluded from
docking with RosettaLigand or RLE to avoid self-docking bias,
leaving a total of 89 test cases across all systems.

RLE Algorithm. Figure 2 illustrates the two-stage RLE
algorithm. RLE takes as input a single protein structure and a
congeneric series of molecules superimposed by a chemical
scaffold. In the low-resolution TransformEnsemble phase, the
same three-dimensional translations and rotations are applied
to all molecules to maintain the superposition and find a
common binding mode. Step sizes and direction for both
translation and rotation are taken from a Gaussian distribution
centered on a user-provided value. Scoring is done using a
pregenerated shape complementarity energy grid and moves
are accepted/rejected by a metropolis Monte Carlo criterion
based on the sum of scores for all ligands in the ensemble. The
protein structure remains static, but ligand conformers are
changed by swapping out individual ligands with alternate
conformations from pregenerated libraries. The benchmark
used the fragment-based BCL::Conf small-molecule conformer
generator.22 During the high-resolution HighResEnsemble
phase, only small perturbations to the ligand are applied, with
the focus on optimizing the protein−ligand interface. As side-
chain orientation differences are observed even for binding of
related ligands, each protein−ligand interface is optimized
independently. In a single simulation run, RLE generates x
models, where x is the number of ligands in the ensemble. Over
the course of n simulation runs, RLE generates n × x total
models, the same quantity as x independent RosettaLigand runs
of n trajectories each.

The bulk of the computation time in both RosettaLigand and
RLE is due to protein side-chain rotamer sampling during the
high-resolution docking phase. As RLE generates individual
protein−ligand models for the high-resolution stage, the
computation time is not significantly altered.

Experimental Model Generation. Initial parameters for
RLE are derived from the latest features of the RosettaLigand
algorithm36,37 and optimized for sampling efficiency. Additional
sampling cycles and a decreased rotational barrier were
necessary to counteract the increased sampling space involved
in finding an optimal position for all molecules simultaneously.
The exact number of sampling steps was calculated on-the-fly
based on the difference between the current step score and the
maximum possible score, assuming that all atoms formed
favorable interactions. Meanwhile, the repulsive score term was
halved to allow the entire ensemble to rotate through clashes.
Ligand atoms are forbidden from moving outside of the defined
docking sphere as was the case in RosettaLigand.

Following optimization, docking was performed with both
RosettaLigand and RLE, and evaluated for native ligand pose
recovery. For each system, individual molecules were docked
independently and as an ensemble into the same receptor
structure. For each run, 2500 models were produced and the
top 10% were selected based on ligand interface energy for
subsequent analysis.

To make the docking simulation resemble actual use, a
uniform volume random translation within a 5 Å sphere and a
random full rotational orientation are performed before
docking. A random conformer is selected from the ligand
conformer library. This avoids biasing the starting position and
orientation to that observed in the crystallographic complex. An
example of how to generate models for one system is provided
in the Supporting Information.

Figure 2. Illustration of the RLE algorithm. The algorithm is divided into the low-resolution TransformEnsemble step and the high-resolution
HighResEnsemble step. Curved arrows represent repeated moves accepted or rejected based on the Metropolis Monte Carlo criterion. Individual
models of each protein−ligand pair are outputted from a single protein structure and superimposed congeneric ligands as input.
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■ RESULTS AND DISCUSSION
We examine the top 10% of scoring models by the ligand
interface score for each ligand cross-docking case. The top 250
models are analyzed for both sampling efficiency and scoring
discrimination of nativelike models. Nativelike models are
defined as having a ligand root-mean-square deviation (RMSD)
of less than 2 Å compared with the co-crystal structure.
Sampling efficiency is represented as the percentage of models
that are nativelike, whereas scoring discrimination is
represented as the scoring rank of the first nativelike model.
A higher sampling percentage of nativelike models and a lower
scoring rank for the best-scored nativelike model indicate an
improvement.

RLE Improves Sampling and Scoring among the Top
Models. Among the top 10% of models by score, RLE
improved both the percentage of nativelike models and the
scoring rank of the first nativelike model compared with
RosettaLigand. Increased sampling efficiency was observed in
62 out of 89 cases, whereas an improved scoring rank was
observed in 22 out of 89 cases, as shown in Figure 3. In three
cases, RLE produced a nativelike model, whereas RosettaLigand
did not. In 10 cases, neither RLE nor RosettaLigand could find
a nativelike model in the top 10%.

Among the cases where RLE improved sampling efficiency,
nearly half showed an improvement of at least 25%. In contrast,
in no case did RLE decrease sampling efficiency by more than
9%. For scoring discrimination, RLE recovered a nativelike top-
scoring model in 10 cases, where RosettaLigand failed to do so.
This is important as RLE would have still produced an accurate

model in an application scenario even for these cases. There is a
single case where only RosettaLigand produced a nativelike
top-scoring model. Here, RLE still produced a nativelike model
in the top 10 scoring.

Although the increase in sampling efficiency was significant,
there does not appear to be a direct translation between the
number of nativelike models and the ability to discriminate
them from non-native-like models. As both algorithms utilize
the same knowledge-based scoring function during the high-
resolution docking and the final ranking, it is expected that they
may have a similar model discrimination power. This is
illustrated in Figure 3c, where, in the large majority of cases,
RLE and RosettaLigand either both succeeded or both failed at
ranking a nativelike model as the best scoring. However, there
are 10 cases where RLE was able to rescue the performance of
RosettaLigand by producing a nativelike best-scoring model.
Averaged across all 89 cases, the sampling efficiency improved
by 18%, and, in 20 of these cases, both sampling and scoring
metrics improved.

RLE Eliminates Alternate Binding Modes. The final
binding location and orientation of the ligand is primarily
determined by the low-resolution docking stage. Perturbations
of the ligand in the high-resolution stage are minimal as the
bulk of the computational time is spent toward conformational
energy minimization of protein side chains. The RLE low-
resolution phase moves all molecules in unison, maintaining
superimposition, and therefore forces molecules to adopt a
common binding mode. This coordinated movement is the
process that eliminates binding volume available to some, but

Figure 3. Comparison of sampling efficiency and scoring discrimination among the top 10% of models by score from individual RosettaLigand
docking versus ensemble RLE docking. Overlapping dots are indicated by the number of overlapped points below it. The blue diagonal line shows
when RosettaLigand and RLE performance are identical. (A) Percentage of nativelike models from single and ensemble docking. (B) Scoring rank of
the best-scored nativelike model from single and ensemble docking. (C) Small-molecule RMSD of the top-ranked model from single and ensemble
docking. The 2.0 Å success cutoff is marked out in black lines.
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not all, members of the group. Figure 4 shows the ligand
RMSD distributions observed among the top 10% of scoring
models for both RLE and RosettaLigand docking. Each
protein−ligand pair of the system is plotted separately so that
effects across the system can be observed. Higher density at the
low RMSD end of the distribution indicates success. The red
line in each subplot shows the 2 Å ligand RMSD cutoff for
nativelike binding modes. The systems have been sorted
qualitatively into broad categories based on whether or not
RLE generally improved both the sampling efficiency and the
scoring discrimination. The RMSD distribution pattern for RLE
is much more consistent within a system than the
RosettaLigand distribution patterns for the same system. This
is the aforementioned “forced common binding mode” effect.
However, there remain individual protein−ligand pairs within a
system where the distribution was not significantly improved.

In the systems where RLE drives both a sampling efficiency
and a scoring discrimination improvement (green), RLE
eliminated a significant number of high RMSD-binding
modes observed in the RosettaLigand results. In the CTAP
example, RLE ligand RMSDs are all within a similar range,
whereas the outliers produced by RosettaLigand are eliminated.
It remains possible for ensemble docking to be more successful
for certain ligands within a group than others. Ligand C for

CTAP has a smaller second peak that is not consistently
eliminated by ensemble docking. One reason for this is that the
high-resolution stage considers ligand conformers in addition to
protein conformers. For larger, more flexible molecules, RMSD
may be relatively high, even if the correct binding location and
orientation is recovered. This is due to ligand conformational
flexibility in the distal regions. Alternatively, in the HCV
example, the majority of models from both RosettaLigand and
RLE are not nativelike, but only RLE generates a batch of
nativelike models. This is the aforementioned “rescue” scenario
in which RLE is able to produce a correct model when
RosettaLigand cannot.

A limitation to the RLE algorithm occurs when the alternate,
high RMSD-binding mode is available to all molecules within a
system, as seen in the P38 system with mixed results (orange).
RLE does not provide a significant advantage in scoring
discrimination when both methods have a similar sampling
efficiency. The emphasis on the placement of the common
scaffold means that an incorrectly identified common binding
mode will result in poor performance across the system, as seen
in THROM (blue). RosettaLigand was able to produce good
results for two members of this system because its docking runs
are independent. Whether or not the different binding modes
will be correctly consolidated in an actual application depends

Figure 4. Ligand RMSD distribution observed among the top 10% of the models for RosettaLigand and RLE. Nine example systems have been
divided into four qualitative categories of sampling and scoring change. For each system, data are split by individual protein−ligand pairs, with RLE
docking on the left and RosettaLigand on the right. The black line shows the median and the red line shows the 2 Å cutoff. (A) RLE improved
docking sampling and scoring for CTAP, HCV, and TPPHO (left, mid, right). (B) The improvement in RLE varied from ligand to ligand within the
system for CDK2 and P38 (left, right). (C) RosettaLigand performed better for LPXC and THROM (left, right). (D) Both methods failed to
perform well for CATB and THERM (top, bottom).
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on the particular post-hoc analysis chosen. This incorrect
placement of the common scaffold is repeated in the CATB and
THERM systems, where the distribution peaks fall out of the
nativelike RMSD range (red). One reason for this is the lack of
chemical diversity in the functional group modifications within
the group. These systems are difficult cases that neither
algorithm can dock well.

Illustrative Examples of Success and Failure. The
binding pockets for several illustrative examples are shown in
Figure 5. Both CTAP ligand B and TPPHO ligand C show a
significant improvement in sampling and scoring. The best-
scoring RLE model is nativelike in both cases and sampling

efficiency was 2.1× and 3.3× better for TPPHO and CTAP,
respectively.

In the CTAP example, ligand B is a small ligand in a
relatively open binding pocket. This made it difficult for
RosettaLigand to determine the proper orientation, generating
three equal possibilities, as shown in the RMSD distribution in
Figure 4. However, the remaining ligands built off of the core
scaffold have large chemical modifications off of two sites. The
interactions formed by the distal groups with the bordering
protein loops allow RLE to identify the proper orientation of
the common core. Another example of this orientation flip is
illustrated in the TPPHO example. Although the RMSD

Figure 5. Illustrative examples of success and failure in recovering a nativelike best-scoring model. The top panels show the best-scoring model from
RosettaLigand and the bottom panels show the best-scoring model from RLE. The co-crystal structure is shown (purple) aligned with the model
(green). The remaining ligands of the RLE ensemble are shown as blue lines. (A) CTAP system, ligand ID B (PDB: 4AGL); (B) TPPHO system,
ligand ID C (PDB: 2QBR); (C) HSP90 system, ligand ID B (4YKQ).

Figure 6. Sampling efficiency vs PropertySimilarity for the top 10% scoring models. Protein−Ligand pairs are divided into cases where RLE
improved both sampling and scoring (red), worsened both sampling and scoring (white), or improved one, but not the other (blue). (A)
PropertySimilarity of each test ligand to the ligand co-crystallized with a receptor structure vs the improvement in RLE docking, as calculated by RLE
percent nativelike minus RosettaLigand percent nativelike. (B) The mean PropertySimilarity for each protein system vs the improvement in RLE
docking. Each vertical set of dots represents a single protein−ligand system.
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distribution for TPPHO ligand C is more distributed, a clear
binding mode is available for ligands D and E in the TPPHO
system. This confers RLE a modest increase in successfully
orienting TPPHO ligand C, with the major deviation due to
conformation rather than orientation.

Although RLE showed a slight sampling improvement for
HSP90, the system proved to be a relatively challenging case for
ensemble docking due to the small size of the ligand system.
RosettaLigand produced a nativelike best-scoring pose, whereas
RLE generated a flipped conformation. The RMSD distribu-
tion, however, favors RLE with more nativelike models. Across
the system, there is a persistent alternate binding mode
suggested by RLE (SI Figure S1) due to the fact that the
binding pocket is much larger than the ligand. RLE is unable to
rule out alternative binding modes of the common scaffold
without distal groups that can eliminate conformational space.

Higher Chemical Similarity Promotes Higher Sam-
pling E� ciency up to a Limit. To better understand
indicators of successful and unsuccessful systems, we sought to
characterize the similarity of the cross-dock small molecules
compared with the co-crystallized molecule. The traditional
Tanimoto similarity coefficient is not particularly robust for
more complex substitutions as it focuses on atom identity

within a common substructure. We compared molecules using
the in-house BioChemicalLibrary to calculate a Proper-
tySimilarity.38 PropertySimilarity measures similarity based on
atomic charges, van der Waals volume, bond types, and the
presence of hydrogen bond donors/acceptors. For this data set,
PropertySimilarity has a general positive correlation with
Tanimoto similarity (SI Figure S2).

The relationship between sampling and scoring improvement
to property similarity is shown in Figure 6. Ligands are
classified based on whether both sampling and scoring
improved (red), both worsened (blue), or a combination of
the two (white). There is a general tendency for molecules
docked with high sampling efficiency to have a high chemical
similarity to the co-crystallized molecule. However, there are a
number of highly related molecules in Figure 6 that are poorly
sampled, suggesting that chemical similarity is a necessary, but
not sufficient, condition for docking success. This is in
agreement with previous studies that have shown that docking
success increases with chemical similarity.24,25

To predict performance on a system level, we computed the
mean PropertySimilarity for each system and plotted this value
against improvement in sampling efficiency in each ligand when
docked with RLE. This is shown in Figure 6, with each vertical

Figure 7. RLE Spearman correction during high-resolution docking to favor binding modes that correlate with experimental data. (A) Spearman-
corrected RLE high-resolution docking steps are shown in red; (B) model selection dilemma resulting from inaccuracies in the docking scoring
function; (C, D) distribution of Spearman correlation in generated ensembles for each system with a corrective factor (left, purple) and without a
corrective factor (right, blue). The mean line is shown in black.
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line comprising of a congeneric set of protein−ligand pairs. The
largest improvement occurs around a mean PropertySimilarity
measure of 0.8, suggesting that there is a “sweet spot” for
improvement. Systems that are too different (P38, mean =
0.37) or too similar (THERM, mean = 0.97) exhibit limited
benefits from ensemble docking. In particular, the THERM
system consists of a chemical scaffold to which the primary
modification is the switching of various hydrocarbon groups.
Furthermore, the molecule interacted with two separate
hydrophobic ends and a network of water molecules in the
binding account, which makes the determination of orientation
difficult.31

Identifying Favorable Binding Poses Corresponding
with SAR Data. The inaccuracy of ranking despite accurate
docking remains problematic. One post-hoc solution is to select
sets of binding modes that correlated with experimental data.
We sought to address this deficiency during docking by adding
a corrective factor to drive high-resolution docking toward
binding modes. Following each cycle of optimization, we
modified the scoring difference based on the Spearman
correlation to experimental data as an adjustment before
applying the Metropolis criterion. This correction is shown in
eq 1. � B and � A refer to spearman rank correlation before and
after the current step, respectively. The weight is a user-
provided value and the adjusted score is used to evaluate
whether the Monte Carlo step is accepted or rejected.

� �= Š Š ×adjusted score score ( ) weightA B (1)

As smaller Rosetta scores are considered more favorable, eq 1 is
written with the default assumption that smaller experimental
values are preferred. The adjustment provides an additional
bonus to perturbations that improved the score of stronger
binding or more active ligands, and to perturbations that
worsened the score of weaker binding or less active ligands.
The low-resolution docking stage remains the same and does
not account for experimental correlations. The adjusted co-
dependent algorithm is shown in Figure 7A, with the score
adjustment being applied in the highlighted step.

Although the corrective factor does improve correlation with
experimental affinity, it does not improve the sampling
efficiency or docking accuracy. This is in part due to the fact
that the binding orientation is primarily determined in the low-
resolution phase that does not account for correlation. The
Spearman correlation coefficient is defined as the Pearson
correlation based on only the ranks of the models. Therefore,
the Spearman correlation has a discrete distribution, with
limited values available for a small data set. This makes it
difficult to significantly improve the correlation in many cases.
The results are in agreement with previous results showing that
improvements in the Pearson scoring correlation using machine
learning-based scoring functions only translated to a moderate
increase in accurate ranking.39

One additional hindrance to a more successful corrective
method is the dilemma in selecting the models illustrated in
Figure 7B. To maintain the experimental correlation, entire
ensembles of ligand models must be selected. However, as the
Monte Carlo sampling method is stochastic, it is unlikely that
each ensemble will contain low-energy conformations of every
protein−ligand interface. Selecting models by a mean metric
across the entire ensemble may select the best-scoring models
for one ligand, but not for others. Even with improvements in
scoring functions, this selection dilemma may prevent RLE
from simultaneously selecting the best models for each ligand.

Comparing RosettaLigandEnsemble with Other Pro-
tein−Ligand Docking Tools. We used AutoDock9 with a
Lamarckian Genetic Algorithm to test its performance in the 89
cross-docking systems in the benchmark set. Standard protocol
settings and a docking volume comparable to RLE docking
were used to generate the models. The AutoDock simulations
were performed using a rigid receptor model.

Figure 8 shows the small-molecule RMSD of the top-scoring
model from RLE and AutoDock docking. RLE recovered a

nativelike small molecule pose in 23 cases, where AutoDock did
not. By contrast, there were only 13 cases where AutoDock had
a nativelike best-scoring model when RLE did not.

Wang et al. evaluated 10 docking software across the
PDBBind data set, including 18 cross-docking cases from the
present benchmark, in which at least one tested method did not
recover a nativelike top-scoring model.40 RLE rescued the
performance in 15 out of 18 of these cases (SI Table S2). Most
notably, RLE was able to generate nativelike models across the
calcium-dependent protein kinase CDPK1 (CALM) and
Helicobacter pylori nucleosidase (MTAN) systems. However,
the 2B07 test case from a series of protein tyrosine phosphatase
inhibitors (TPPHO) remains challenging. This is likely related
to the orientation flip discussed with respect to Figure 5. RLE
was also able to recover nativelike top-scoring models for all
five spleen tyrosine kinase compounds also tested in CSAR
2014, matching the performance of the best available docking
tools.41 However, RLE performed worse on an deacetylase
(LPXC) test system that was part of CSAR 2012,13 only
recovering a near-native model in one out of four cases. The
generated best-scoring models had an RMSD of 2.23 Å in the
worst test case, suggesting only a minor decrease in
performance in the LPXC system. It should be noted that
these comparisons do not account for additional protein
flexibilities accounted for by RLE, nor does it include the effects
of differences in the starting ligand conformation. However,
there does not appear to be a strong induced fit or
conformational selection component in these structures.

■ CONCLUSIONS AND FUTURE DIRECTIONS
Needed Improvements in Decoy Discrimination. The

improved sampling efficiency did not directly translate into
improved scoring ranking partly due to the inaccuracies in
discriminating between nativelike and non-native-like models.

Figure 8. Small-molecule RMSD of the top-ranked model from RLE
and AutoDock docking. The 2.0 Å success cutoff is marked out in
black lines. Equal performance of the two software is indicated by the
blue line.
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Better decoy discrimination in conjunction with the more
efficient sampling will allow for fewer models to be produced
before converging on a nativelike binding mode. The reduced
number of models will greatly reduce the time and computa-
tional resources necessary for docking. Furthermore, the SAR-
correlated docking would benefit greatly from a more accurate
scoring function capable of ranking ligands. RLE in
combination with such a method would generate binding
modes in accordance with SAR data without the need for post-
hoc filtering.

Consideration of Alternate Binding Modes among
Congeneric Ligands. RLE docking is generally designed for
docking in cases where similar ligands exhibit a common
binding mode. This is the case for the vast majority of known
protein−ligand crystallographic complexes.5,28 Presently, a
priori assumptions are made for a given system, even if
single-ligand docking is used, as initial placement is often based
on previously seen binding modes. A future development of
RLE docking would allow for minor shifts in the binding mode,
while maintaining the general placement and orientation, a sort
of soft ensemble docking. Furthermore, the use of a property-
based alignment method such as PropertySimilarity will allow
for common scaffolds based on chemical similarity as opposed
to identity. Cases wherein similar ligands bind in completely
different pockets or to different protein conformations will
remain challenging for ensemble-based methods.

Ensemble Approaches from the Protein Structure-
Based Direction. A similar approach can be used to drive
ensemble docking improvements in the use of protein mutation
data. Current approaches to protein ensembles generally focus
on accounting for conformational diversity. Mutational data on
proteins are used to identify potential protein−ligand
interaction sites as a distance restraint to docking. An alternate
ensemble approach would utilize SARs based on multiple
protein mutants to determine how the ligands may bind to each
mutant within the series. A further step would be in combining
protein ensemble and ligand ensemble methods to improve
docking accuracy by considering how ligand modifications fit
into the different pockets of protein mutants. Multi-target
virtual screening, in particular, with biologically relevant
mutants, can be performed with such an algorithm. The
Platinum database of small-molecule interactions with protein
mutants42 provides an excellent source of data for training an
algorithm in this approach.
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